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ABSTRACT

Four discretization methods were applied and evalualed on a
real power generalion dalabase with hydroelectric mexican
wtilities information from years 1988 to 2001. In this paper we
present the resulls oblained using the discrelzation methods
*ChiMerge”, "1R", "Equal Interval Widlh™ and "Recursive
Minimal Enlropy” as preprocessing previous 1o data mining.
The discrelized data then was load to the "C4.5" mining tool
to obtain production rules (hidden knowledge). We evaluated
accuracy, knowledge amount reduction and processing time.

Keywords: Arificial intelligence, Data mining, Power system
planning, Preprocessing dala,

. INTRODUCTION .

t has been estimated [1] that the amount of
inforration in the world doubles every 20 months, The
size and number of databases probably increases
even faster. To achleve the use this huge amount of
information Is necessary to apply algorithms and tools
specialized to automatically discover the knowledge
hidden In such information. The process of the non
trivial extraction of implicit, previously unknown, and
potentially useful information from data is known as
data mining or knowledge discovery.

There exists a growing Interest in the research
community in the area of knowledge discovery from
databases; not only at the academic institutions as
MIT, UCLA, Stanford, Camegie Mellon, Texas,
CALTEC, Johns Hopkins, etc. but also, in the industry,
they are interested in the topic, like strong companies
as IBM, Mitsubishi, NASA, GTE and AT&T.

Data mining has been successfully applied to many
different fields and problems of the real world, for
example, in large-scale telecommunication networks
[2], in the production process of a nuclear fuel power
plant [3], in the flashover analysis of high tension
insulators [4], or in the production of electrical energy
[5].

Some of the techniques traditionally used to
accomplish data mining are: artificial neural nets,
induction of decision trees, decision rules and
nearest-neighbor methods.

Data mining is applied mainly when large amounts of
historical data have been stored and it is expected to
exploit them by seeking the implicit knowledge hidden
in this information; in other words, it is sought to
determine trends or behavior pattems that allow to

improve current procedures applied in marketing,
production, operation or maintenance.

Such is the case of the power generation database
developed and maintained by the Performance Control
and Informatics Unit of the Electric Generalion Division
of CFE (Comisién Federal de Electricidad), the
national electric utiity company responsible for
generating, transmitting and distributing electrical
energy in Mexico, This database contains the basic
data to compute the performance ratios or indexes for
each generating unit (hydro or thermoelectric), power
plant, generation region and for the whole CFE. These
indexes are classified in seven groups: process
performance, labor productivity, economic productivity,
training, budget and process costs,

Before applying data mining tools to a data set, there
are important reasons to employ discretization
methods as a preprocessing phase (6, 7, 8). Athough
continuous  attribute discretization has received
significant attention in the machine leaming community
(only recently), still there are a lot of research work to
do in this topic, particularty from the application point of
view.

This paper describes the reasons for attribute
discretization preprocessing, the previous work on
discretization and the results of an empirical evaluation
of four discretization methods: "ChiMerge”, "1R",
"Equal Interval Width" and "Recursive Minimal
Entropy”, we evaluated accuracy, knowledge amount
reduction and processing time. Also describes the
subset of the database used for knowledge discovery
to which the discretization methods were applied
before using the data mining algorithm "C4.5". The
resuits are presented, and the advantages and
disadvantages of each discretization method are
discussed in the context of the application (power
generation database). Although our work focuses on
this power generation database, the conclusions can
apply also to other similar problems.

Il. DISCRETIZATION OF NUMERIC
ATTRIBUTES

Discretization can tum continuous numeric attributes
into discrete ones; In other words, discretization is
performed by dividing the values of a numeric
(continuous) attribute into a small number of intervals,
where each interval Is mapped to a discrete
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(categorical or nominal) symbol; unless users are
knowledgeable about the problem domain and
understand the behavior of the dassification algorithm,
they won't know which discretization is best
(something they expected the dlassification system to
tell them) (9].

The reasons for attribute discretization are:
«Algorithmic requirements. Many algorithms developed
in the machine leaming community focus on leaming in
nominal attribute spaces [10}. However, many real-
world dlassification task exist that involve continuous
attributes where such algorithms could not be applied
uniess the continuous attributes are first discretized.
.Increasing the speed of induction algorithms.
Processing time reduction is important in real-time
systems where response time is a critical faclor, and in
any application it is desirable. Intuitively, the data
mining algorithm processing time must be reduced
when discretization is applied to the data since the
algorithm has less attribute values to work with.
«Improve the performance (accuracy) of the induction
tool. The rules, oblained by the discovery algorthm
from data that has been discrelized, use less values to
mode! (represent) the knowledge. This is important to
the final users in order to understand, interpret, but
before applying the rules to take decisions, it is
important to verify that no accuracy has been lost as
compared to the rules obtained from the oniginal data.
Knowledge amount reduction. In the previous point,
the number of values was the issue, here, intuitively,
we expect that the number of rules is reduced if data is
discretized before the mining algorithm is applied to it.
And also, for the same reasons mentioned, this is
important to the final users. We can also expect a
reduction not only in the number of rules but in the
number of conditions in the anlecedents of the rules.
There are unsupervised and supervised discretization
methods: the former do not make use of instance
labels (for the class column) in the discretization
process; the second type utilize the class labels.
Generally, it has been observed that the supervised
methods produced better results.

Discussing about previous work on discretization,
Dougherty [11] points out that the simplest
unsupervised discrelization methods are the “Equal
Interval Width" and the "Equal Frequency Interval”
(they divide a continuous variable into k intervals
where, given m instances, each interval contains m/,
possibly duplicated, adjacent values) which are
vulnerable to out-liers that may drastically skew the
range. As for the supervised methods, there exists a
good amount of them, a fact thal makes it difficult to
select the best for a particular database. Some of
these methods are: "Maximal Marginal Entropy” [12].
=/ector Quantization” {13}, “Hierarchical Discretization™
[14), "Predicative Value Maximization" [15), "D-2" [16],
"Adaptive Quantizers" [17}, "ChiMerge" [9], "1R" [18],

"Recursive Minimal Entropy™ (18], "Monothetic ¢
Criterions” [20), "StatDisc” [21} and "Chi2" [27] ONtray
Some experimentation has been doﬁa
discretization methods, Catlett [16] has explopq ™
use of entropy-based discretization in dedsi;ed the
domains as a means of achieving an im N
increase in the speed of induction on very Iapm
sets with many continuous attributes (he I‘Eponrge daly
10 to 50-fold speed-up). Kerber [9] mmpare‘:ivera
accuracy of the methods “ChiMerge”, "D-2" ¢ the
Interval Width" and "Equal Frequency Intervap Quy
two databases and the “Backpropagation” neUr:s‘“g
as dassifier algorithm. Dougherty [11) performe d“el
study to compare the methods "Equal Interval wigy.
"{R"y "Recursive Minimal Entropy Partilioning" 3 lth
to 16 databases using "C4.5" and "Naive Bay:se-l
induction algorithms; it is mention how the accura
improved in some cases, but no information is ingyy
about how the size of the extracted know ..
(number of rules and average number of conditiong
the antecedents of the rules), and the processing
are affected. For three databases, Liu {22] meamn:
the accuracy and the number of attributes of the
produced by "C4.5" without and with the 'Chp
algorithm discretization.

However, none of these studies has measured
joint impact of discretization on the accuracy, the

of the knowledge, and the processing time 1o produce
it. The joint evaluation of these aspects is importan
since somelimes the accuracy can be improved
the number of rules and the processing time
increased. In this paper, we look for the ideal of finding
a discretization method that causes to improve
accuracy of the knowledge extracted by the
mining algorithm, and also reduces the number of
and the processing time.

Il. PROBLEM DESCRIPTION

The data was selected by the personnel of
Performance Control and Informatics Unit of CFE.
table was built with 32 attributes or variables (columns)
and 441 inslances or records (rows) comesponding
hydroelectric information for the years 1988 to 2001.
The 32 variables include the following: power
identifier, date, plate and effective  capacly.
unavailability by type of failure; outage equivalent
hours due to decrements, number of outages
outage hours due to failure and due to routine
coreclive maintenance and other Causes,
kilocalories; net and gross generalion; permaneni
workers used in maintenance, in operation, and
other activities; additional workers -
maintenance, in operation, and other activie
equivalent substitution workers in maintenance.
operation, and in other activities; total persom
positions; accidents that cause lost of time; acdde
in transit days lost due to accidents; days lost
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accidents in transit; sum of disabilities in percent; and
various expenses.

with this data sel, a supervised [23] dala mining
experiment was outlined as follows:

.To use the variable Power Plant Factor (PF), as the
"dass" or focus of attention for the experiment. To
calculate the PF the following formula was used:

Gross Generation
PF = * 100
HP * Net Generatlion

where HP (hours per peried) is equal to 8,760 hours
(365 days muitiplied by 24 hours).

«To cluster the PF varable according to Table | (these
intervals were defined by the users of the database).

TABLE l. Plant Factor Classes

Plant Factor Interval (%) Class Value
0.00-19.99 Very-Low
20.00-39.99 Low
40.00-49.99 Regular
50.00-69.99 Average
70.00-79.99 Good
80.00-89.99 Very-Good
90.00 - 100.0 Excellent

«To substitute the four unavailability columns by its
corresponding perceniage values.

*To eliminate 9 columns that were found to be general
variables of no interest.

The result was a database table with 21 columns of
continuous numeric values and one discretized column
containing PF dass values.

We choose to use "C4.5" [24] since in [25] a
comparison between the data mining tools “C4.5",
"CN2", "FOIL", and "PEBLS" as applied to this power
generation database was presented. Afler applying
these tools it was appreciated that "C4.5" was the tool
that obtains the more condse knowledge, since it
generates the smaller number of production rules with
an acceptable eror, but with biggest processing time.
Considering that "C4.5" performs better (accuracy and
rule amount), it was used as starting point for the
discrelization preprocessing experiments presented
here. Other reasons for our choice are: "C4.5" works
well for many problems and is well known; additionally,
"C4.5" selects relevant attributes by itself in tree
branching so it can be used as a benchmark, to verify
the effects of discrelization.

The "C4.5" data mining tool is based on the "ID3"
algorithm (26], recursively divides the data set into
homogeneous groups by selecting the attribute that
best partitions (or explains) the data according to the

focus of attention attnbute; the selection is
accomplished by calculating the entropy of each of the
attnbutes and choosing that of smaller entropy. This
tool presents the extracted knowledge in the form of
decision trees and then in the form of production rules.
This tool intemally includes a "local discretization
method", that produces partitions that are applied to
localized regions of the instance space, it is say,
discrelization is performed not as.a preprocessing
step, but dynamically as the tool runs; the same
measure used to choose the best attrbute to branch
on at each node of the decision tree is used to
determine the best vaiue for splitting a numeric
attribute into two intervals; this value, called a cutpoint,
is found by exhaustively checking all possible binary
splits of the cumrent interval and choosing the splitting
value that maximizes the information gain measure
(smaller entropy).

IV. DESCRIPTION OF METHODS

EVALUATED

The discretization methods that were applied to the
data described in the previous seclion were
"ChiMerge" [9], "1R" [18], "Equal Interval Width" and
"Recursive Minimal Entropy” [19]; the evaluation of the
melhods was made on the basis of: reduction of the
amount of the discovered knowledge, accuracy
(cerainty) of the extracted knowledge and time lo
obtain results (processing time). A brief description of
each of these discretization methods follows:

«"Equal Interval Width". It involves sorting the observed
values of a continuous attribute and dividing the range
of observed values of the atiribute into k equally sized
intervals, where k is a parameter supplied by the user.
if an attribute x is observed to have values bounded by
Xmn aNd Xmer then this method computes the interval
width (W) as follows:

W=(x,..- X )/k

and construcis interval boundaries, or thresholds, at
Xon + (W * ) where i = 1,..., k-1. The method is applied
to each continuous attribute independently. It makes
no use of instance dlass information whatsoever and is
thus an unsupervised discretization method.
~"Recursive Minimal Entropy". It is based on a minimal
entropy heuristic: if we are given a set of instances S,
an attribute A, and a partition boundary T, the class
information entropy of the partition induced by T
denoted E(A,T;S) is given by:

E(A.T:S)=(S)1/19) * Ent(S;) +(154/18) * En(S;)

For a given attribute A, the boundary Tm,» which
minimizes the entropy funclion over all possible
parition boundaries is selected as a binary
discretization boundary. This method can be applied



recursively to both of the partitions induced by T, until
some slopping condition is achieved, thus creating
multiple intervals on the attribute A. Since the partition
along each branch of the recursive discretization are
evalualed independently using this stopping critera,
some areas in the continuous spaces wil be
partitioned very finely whereas others (which have
relatively low entropy) will be partitioned coarsely.
"1R". Induces one-level decision trees, sometimes
called decision stumps. In order to properly deal with
domains that contain continuous valued attributes, a
simple supervised discretization method is given. This
method, referred as 1RD (One-Rule Discretizer), sorts
the observed values of a continuous attribute and
attemps to greedily divide the domain of the attribute
into intervals that each contain only instances of one
particular class; since such a scheme could possibly
lead to one interval for each observed real value, the
algorithm is constrained to form intervals of at least
some minimum size.

~"ChiMerge". Begins by placng each observed real
value into its own interval and proceeds by using the
X* (chi-square) test to determine when adjacent
intervals should be merge. This method tests the
hypothesis that the two adjacent intervals are
statistically independent by making an empirical
measure of the expected frequency of the classes
represented in each of the intervals. The extent of the
merging process is controlled by the use of a
threshold, indicating the maximum X° value that
warmrants merging two intervals.

“ChiMerge" was implemented in language C by the
authors of this paper and suggestions found [9] were
incorporated to the algorithm. For the other three
methods we use the Discretize Module from the
MLC++ library [27] obtained through Intemet.

V. APPLICATION AND EVALUATION

All the following discretization experiments were
executed on a SPARC/20 workstation (32 bit bus, 64
Mb RAM, 66 MHz, RISC-SPARC).

A. Experiment 1

No discretization preprocessing was applied to the
data set and "C4.5" was applied direclly to the data
using the default parameters (for example: 10 trials,
weight 2, certainty faclor 25%, verbosity level 0, etc.),
the result is shown in Table Il.

TABLE Il. Results of applying "C4.5"
without previous discretization

Observed Characteristic Obtained Value

Error (Best decision tree) 334%
Error (Best ruleset) 206 %
Number of production rules 27

Average antecedents perrule  5.11
Processing lime minutes 20.9

—_—
in Table 11, "Error (Best decision tree)" is the "Eep
emror" as referred by the "C4.5" tool. The obslfmale
characteristics "Eror (Best ruleset)”, "Numse“‘d
production rules”, and "Average antecedents D&
correspond to the "composite ruleset" s;eneranr
"C4.5". The "Processing time" refers to the ﬁ8d
obtain the decision tree (18.04 minutes) piyg the's
to obtain the production rules from the req lime
minutes). (285

B. Experiment 2

"Equal Interval Width™ (referred to as "Binning"
MLC++ library) was used to discretize the dat bef
the application of "CA4.5". Actually, the expe; Ore
included 4 different discretizations preprocessiryg gy,
comesponding executions of "C4.5". The resyjg 4
shown in Table |l where the parameter 'N|T_VALUE~
the number of intervals used for each of lhen
discretizations, and where: INIT_VAL = numbe,
intervals; Time = Processing lime, # Rules = numpe; o
rules; Error Rules = Error (Best ruleset).

TABLE lil. Results of applying "C4.5"
__(previous "Equal Interval Width'

rmn_vu. Tume | #Rules Ervor

Rules

I 0 80 1745 516

10 59 13 55 569
F 12 1727 508
l 100 52 1745 516

C. Experiment 3

"{R" was used to discrelize the data before
application of "C4.5". Actually, the experimen
included 5 different discretizations and
comesponding executions of "C4.5". The resulls
shown in Table IV where the parameter MIN_INT
the minimum number of instances per label. (Holte
suggest 6 as minimum number of instances per

3

TABLE IV. Results of applying "C4.5"
(previous "1R" discretization

MIN_INT Time # Rules Emror
Rules

0 46 35.00 333

10 52 3082 352

50 5.0 1664 402
100 19 945 528
130 43 2136 508
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D. Experiment 4

“Recursive Minimal Entropy” (referred to as "Entropy”
in the MLC++ library) was used to discretize the data
before the application of "C4.5". The experiment
included 5§ | different discrelizations and 5§
comesponding executions of "C4.5". The results are
shown in Table V where the parameter MIN_INT is the
minimum number of instances per label and we
maintained constant to the default value of zero the
parameter INIT_VALUE.

E. Experiment §

In this experiment, "ChiMerge" was used to discretize
the data before lhe application of "C4.5". A 0.95
significance level with 6 degrees of freedom was used
since the dass column has 7 different dass values
(this is equivalent to a 12.59 X*-threshold). The results
are shown in Table VI.

TABLE V. Results of applying "C4.5"
(previous "Entropy" discrelization)

MIN_INT Time # Rules Eror
Rules

0 Jo 845 376

10 33 845 376

50 45 627 445
100 95 6.36 425
130 55 827 444

TABLE VI. Results of applying "C4.5" with
previous "ChiMerge" discretization

Observed Characteristics  Obtained Value

Error (Best decision tree) 41.6%

Ermor {Best ruleset) 30.2%
Number of production rules 21

Average antecedents perrule  2.66
Processing lime 3.08 minutes

VI. DISCUSSION

Some tradeoffs are analyzed for each discrelizer
considering as reference the experiment 1 where no
discretizer was used.

*"Equal [nterval Widlh". Even though this discretizer
reduces the processing time (up to 20-fold speed-up),
the number of rules (up to 4.5-fold) and the average
antecedents per rule (up to 3.3-fold); the accuracy is
not acceplable (between 50% and 57% eror for the
best ruleset). Because of this, this discretizer is not a
good altemative for our database. This result agrees
with the ones reported in the literature.

"Recursive Minimal Entropy”. The results are similar

to the experiment with the "Equal Interval Width"
discretizer, namely, the accuracy is not acceptable
(between 37.6% and 44.5% error for the best ruleset),
even though this discretizer reduces the processing
lime (up to 10-fold speed-up), the number of rules (up
to 5-fold) and the average antecedents per rule (up to
2.3-fold). We observed that the error is almost the
same for different values of MIN_INT, this dicretizer
should be used with caution. Our results do not agree
with the ones reported in [11]

*"1R". Our resulls agree with Holte's suggestion [18] of
assigning a value of 6 to the minimum number of
instances per Iabel since we oblained the best result
with a value of 7.

In this case (MIN_INT = 7), the error for the best
ruleset was in the order of the error obtained in the

experiment 1 (28.8% vs 20.6%) that has no previous

discretization. Reductions in the processing time (up to

2.9-fold speed-up), and the average antecedents per

rule (up to 2.8-fold) were oblained, but a little increase

in the number of rules (up to 1.2-fold) was observed.

This results are shown in Table VIi.

TABLE VII. Results of applying "C4.5" with
previous "1R" discretization (MIN_INT = 7)

Observed Characteristics Oblained Value

Error (Best decision tree) 47.6%
Error {Best ruleset) 28.8%
Number of production rules KK}
Average antecedents perrule  1.81
Processing time 7.1 minutes

*"ChiMerge". With this discretizer the error for the best
fuleset was similar to the emror obtained using "1R"
(30.2% vs 28.8%) and as compared to experiment 1,
significant reductions were obtained in processing time
(3.08 minutes vs 20.9 minutes), average antecedenls
per rule (2.66 vs 5.11), and number of rules (21 vs 27).

Vil. CONCLUSIONS

The knowledge discovery in large databases is an

area of artificial intelligence that is an altemative lo the

analysis of data and that uses ‘“intelligent"

computational  searching techniques to discover

knowledge based on data mining algorithms that are

capable of identifying regularilies, tendencies or

pattemns hidden in the data sets that are not so easy to

find using traditional methods, to improve the curment
procedures of a company for marketing, production,
operation, maintenance, or other.

In this paper we evaluated four discretization methods
and successfully obtained knowledge from a subset of
the power generation database of the Performance
Control and Informatics Unit of CFE for hydroeleciric
generating units.
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The discretization preprocessing methods that
performed better were "ChiMerge" and "1R" since they
Caused “C4.5" to improve its results when applied to

power generation dalabase: it was achieved to
reduce processing lime and the size of the extracted
knowledge (number of rules and average antecedents

rule). However, none of the discretization methods
caused to improve accuracy since the error for the best
ruleset always increased, but it can be appreciated that

"ChiMerge" and "1R" the error is reasonable.

the future, research should be done about
discretization methods that:

automatically adjust their parameter to obtain the
best clustering of continuous numeric attributes, to
avoid the execution of many experiments o find the
best mix.

consider groups of two or more atiributes of the
table al the same time instead of just one attribute to
perform the discretization. Intuitively, we think that
two joint attributes may correlate better than just one
with the classes and also the result would cause the
mining a'gorithm to perform better.

perform more simulations with academic

databases, to obtain general results and condlusions.
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